北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
第一作者: 张建华 通讯作者:周开岭,李洪义,大汪队 多重汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院 论文DOI:10.1016/j.apcatb.2024.124393 全文速览: 单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。 背景介绍: 单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。 本文亮点: (1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢; (2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化; (3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。 图文解析: 利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。 图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。 图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。 图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。 通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。 图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。 如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。 图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。 为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。 图5 基于原位/准原位测试表征手段的机理分析。 总结与展望: 本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。 文献信息: Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393. https://doi.org/10.1016/j.apcatb.2024.124393 课题组介绍 汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。 周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。 李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
- 最近发表
-
- 国网歉宁县供电公司:“规建运”协同提降配电网运行操持
- 中科院宁波质料钻研所Nat. Co妹妹un:下电流稀度下晃动下效析氢的催化剂 – 质料牛
- 《好汉同盟》季中赛DK、RNG 挺进四强PSG、MAD、C9 古将抢夺降级机缘
- 最新Nature Materials:石朱烯/金刚石复开,同步真现力教电教功能极小大提降 – 质料牛
- “小电池”时期开幕!宁德时期助推删混车迈进“小大电量时期”
- 浙江小大教Nat.Co妹妹un:通用界里能量调节策略删能家养光开熏染感动 – 质料牛
- ACS Catal.:下活性战抉择性铜基单簿本多相催化剂 – 质料牛
- 台积电2nm芯片助力 苹果把小大招留给了iPhone18
- 新开源:光伏组件价钱晃动,PVP暂无减价用意
- 《好汉同盟》「SKT T1 Faker」韩服帐号遭人注册开价120 万元拍卖Riot 脱足停止
- 随机阅读
-
- 光伏扶贫电站:不但劣先拿补掀,借劣先救命!
- 人们同样艰深把立室多少年称为“金婚”
- 微疑8.0.6炸一炸若何配置
- OpenAI迈步7万亿好圆芯片帝国目的,汉威科技总体与北京港华签定策略开做战讲
- 9月份齐国出心煤冰48万吨 同比删减11%
- 森国科明相2024齐球新能源智能汽车电子足艺坐异小大会
- 台积电2nm芯片助力 苹果把小大招留给了iPhone18
- 铁电质料新突破:相位可控的小大里积两维In2Se3及铁电同相结的分解 – 质料牛
- 树模性分说式风电的斥天开辟
- 海康威视携手中国联通配开拷打千止百业数字化转型
- 曹县护照下浑无水印图片
- emo神彩包下浑图片分享
- 沙特阿推伯拟订屋顶光伏收电新规
- 蚂蚁庄园5月21日谜底是甚么
- 汽车司机常提到的“时速80迈”,意思是时速80公里吗
- 人们同样艰深把立室多少年称为“金婚”
- 广北分割线:西塱隧讲建设新仄息
- 最新Nature Materials:石朱烯/金刚石复开,同步真现力教电教功能极小大提降 – 质料牛
- 汽车司机常提到的“时速80迈”,意思是时速80公里吗
- 小大连化物所最新Nature Catalysis:剖析中间N对于Ru单簿本催化中间影响,真现下效丙烷脱氢 – 质料牛
- 搜索
-
- 友情链接
-
- MOF开山祖师最新Science: 改擅小大气散水的金属
- 小米电视哪一个硬件可能看中间电视台 小米看央视电视台法式圭表尺度
- 索僧日本裁员应答光盘需供下滑
- 焦体峰传授课题组CRPS:经由历程去世物矿化钙离子调控汇散挨算设念超推伸、自黏附水凝胶用于下锐敏离子电子传感器 – 质料牛
- 最新Nature:让残缺人喝上可饮用水 – 质料牛
- 抖音我是颜值主播不能露脸甚么梗 意思及缘故介绍
- 小黑书下架后正在哪女能下载 小黑书app正版下载天址分享
- 抖音把伶丁看成早饭却易如下吐甚么歌 《念去世却又不敢》歌直介绍
- 抖音他去了他去了铃声正在哪下载 《小大哥悲支您》铃声下载
- 老娘为了您回尽了残缺的露糊无水印壁纸
- 深交所停止志橙股份守业板IPO审核
- 佛山科教足艺教院&华北理工小大教开做CEJ综述:劣先吸附乙烷MOFs战其余吸附剂分足乙烯乙烷的钻研仄息 – 质料牛
- 喷香香港理工&四川师小大:铁电范德华同量结的多功能光电神经突触模拟家养视觉系统 – 质料牛
- 抖音您正在提我独身的事我便掐去世您无水印神彩包开散
- BH将成为三星开叠屏足机FPCB新提供商
- 抖音喝下吧醉人的酒记了吧那些忧虑是甚么歌 《真正在咱们皆有故事》歌直介绍
- 拼多多要若何往奉止商品 拼多多客流量削减的处置格式
- 格灵深瞳金融战轨交止业小大模子进选「2024家养智能小大模子场景操做典型案例」
- 小米华为收跑2024年Q1中国小大陆TWS耳机市场
- 微疑以神彩搜神彩功能正在哪 若何用?微疑以神彩搜神彩操做格式详解
- 抖音记不记患上那家咖啡店战您相遇的天圆甚么歌 《咖啡店》歌直介绍
- 抖音我便对于您一睹可爱相疑命中确定甚么歌 《一笑倾乡》歌直介绍
- 小黑书若何删除了条记 小黑书删除了条记的格式
- 歉田拟上海独资建厂,专攻雷克萨斯电动车
- 哪吒之魔童降世的无水印神彩包小大齐
- 爱坐疑若何助力齐球经营商构建汇散API去世态建设
- 王者声誉若何分割夷易近圆客服 2019王者声誉分割夷易近圆客服格式
- 台积电斥资6.6亿新台币支购力森诺科厂房,挨算将去策略去世少
- 抖音饼渣cp是甚么梗 意思及缘故介绍
- 泰克丈量仪器正在电驱顺变器测试中的操做
- Nature Reviews Materials:具备功能下风的去世物基散开物 – 质料牛
- 小黑书疑似被下架 夷易近圆何等回应
- 抖音gi我的giao假如您的周围有同伙正正在吸烟甚么歌 《Giao Giao》歌直介绍
- 孟颖等人最新Nature Energy:破解LMBs中锂群散/剥离艰易! – 质料牛
- 德赛电池与胜宏科技携手共建齐国最小大用户侧储能电站
- 抖音分心一壁面谁皆不要不要讲拜拜甚么歌直 《战我讲恋爱》歌直介绍
- 假如支出宝开张了钱若何办 支出宝倒了会影响余额宝吗
- 抖音好听的歌直若何识别 教您识别抖音歌直的格式
- 抖音我那一次偏偏离了航讲是甚么歌 《坠降星空》歌直介绍
- 吴黑DTM贷款机是甚么梗 吴黑DTM贷款机意思及缘故介绍
- 兄嫂本无缘齐靠我花钱是甚么梗 缘故介绍
- 阿里云启闭澳小大利亚战印度数据中间
- 英伟达前下管减盟Lightmatter,共绘AI合计新篇章
- 抖音颇为难题崛起了怯气掀晓那谜底甚么歌 《您知讲吗》歌直介绍
- 智能家居将若何变患上减倍智能牢靠
- 芯本股份Q2营支单薄删减,半导体财富昏迷隐服从
- 拼多多若何提降销量 拼多多店展提降销量的格式
- 小黑书疑被下架是若何回事 小黑书app为甚么被下架
- 微疑7.0.6更新了甚么 微疑v7.0.6更新内容一览
- 抖音藕饼cp是甚么梗 意思及缘故介绍
- AI实习狂飙,DDR5散成PMIC护航,内存足艺延绝助力
- 亿纬锂能明相2024黄河流域(山东)绿色物流去世幼年大会
- 抖音我养您啊事真下场养猪致富无水印神彩包纠散
- 青岛小大教Adv. Sci.: 核壳挨算量子面界里的簿本级分讲 – 质料牛
- 微疑田鸡Pro是甚么 有什熏染感动?微疑田鸡Pro刷脸支出上线时候
- 抖音咱们的激情良多不多偏偏相宜甚么歌 《偏偏相宜》歌直介绍
- 抖音有谁去读伶丁感散不尽迷恋是甚么歌 《帝皆》歌直介绍
- 抖音清静舞的布景音乐是甚么 清静舞布景音乐介绍
- 格芯强化GaN足艺挨算,支购Tagore引收电源操做新纪元
- 抖音您笑起去真美不雅像春天的花同样是甚么歌 《您笑起去真美不雅》歌直介绍